UNTIL NOW, THE WINDOW TO TREAT ACUTE STROKE WITH TISSUE PLASMINOGEN ACTIVATOR (tPA) OR ENDOVASCULAR THROMBECTOMY WAS SIX HOURS, MAXIMUM. MANY CENTERS WOULDN'T ADMINISTER tPA AFTER FOUR HOURS.

PROGRESS HAS BEEN MADE IN THE IMPLEMENTATION OF OPERATIONAL EFFICIENCIES TO FACILITATE THE EARLY, PREHOSPITAL IDENTIFICATION OF STROKE SYMPTOMS; RAPID EMS STROKE DIAGNOSIS; RAPID CT IMAGING; AND, IF APPROPRIATE, THE TIMELY ADMINISTRATION OF tPA AND THROMBECTOMY. HOWEVER, THE SIX HOUR PROBLEM REMAINED—ENDOVASCULAR THROMBECTOMY WAS PREVIOUSLY RECOMMENDED ONLY IF PERFORMED WITHIN SIX HOURS OF SYMPTOM ONSET.

BUT WE HAVE GOOD NEWS: WITH THE RECENT PUBLICATIONS OF THE DAWN AND DEFUSE3 TRIALS, THERE’S NEW HOPE.

THE DAWN TRIAL DEMONSTRATED THAT SELECT PATIENTS WITH ACUTE ISCHEMIC STROKE
INDICATIONS

XARELTO® is indicated to reduce the risk of stroke and systemic embolism in patients with nonvalvular atrial fibrillation (AF). There are limited data on the relative effectiveness of XARELTO® and warfarin in reducing the risk of stroke and systemic embolism when warfarin therapy is well controlled.

XARELTO® is indicated for the treatment of deep vein thrombosis (DVT). XARELTO® is indicated for the treatment of pulmonary embolism (PE). XARELTO® is indicated for the reduction in the risk of recurrence of DVT and/or PE in patients at continued risk for recurrent DVT and/or PE after completion of initial treatment lasting at least 6 months.

IMPORTANT SAFETY INFORMATION

WARNING: (A) PREMATURE DISCONTINUATION OF XARELTO® INCREASES THE RISK OF THROMBOTIC EVENTS, (B) SPINAL/EPIDURAL HEMATOMA

A. Premature discontinuation of XARELTO® increases the risk of thrombotic events

Premature discontinuation of any oral anticoagulant, including XARELTO®, increases the risk of thrombotic events. If anticoagulation with XARELTO® is discontinued for a reason other than pathological bleeding or completion of a course of therapy, consider coverage with another anticoagulant.

B. Spinal/epidural hematoma

Epidural or spinal hematomas have occurred in patients treated with XARELTO® who are receiving neuraxial anesthesia or undergoing spinal puncture. These hematomas may result in long-term or permanent paralysis. Consider these risks when scheduling patients for spinal procedures. Factors that can increase the risk of developing epidural or spinal hematomas in these patients include:

- Use of indwelling epidural catheters
- Concomitant use of other drugs that affect hemostasis, such as non-steroidal anti-inflammatory drugs (NSAIDs), platelet inhibitors, other anticoagulants, see Drug Interactions
- A history of traumatic or repeated epidural or spinal punctures
- A history of spinal deformity or spinal surgery
- Optimal timing between the administration of XARELTO® and neuraxial procedures is not known

Monitor patients frequently for signs and symptoms of neurological impairment. If neurological compromise is noted, urgent treatment is necessary. Consider the benefits and risks before neuraxial intervention in patients anticoagulated or to be anticoagulated for thromboprophylaxis.

DVT = deep vein thrombosis; NOAC = non-vitamin K antagonist oral anticoagulant; NVAF = nonvalvular atrial fibrillation; PE = pulmonary embolism.
IMPORTANT SAFETY INFORMATION (cont’d)

CONTRAINDICATIONS
- Active pathological bleeding
- Severe hypersensitivity reaction to XARELTO® (eg, anaphylactic reactions)

WARNINGS AND PRECAUTIONS
- Increased Risk of Thrombotic Events After Premature Discontinuation: Premature discontinuation of any oral anticoagulant, including XARELTO®, in the absence of adequate alternative anticoagulation increases the risk of thrombotic events. An increased rate of stroke was observed during the transition from XARELTO® to warfarin in clinical trials in atrial fibrillation patients. If XARELTO® is discontinued for a reason other than pathological spinal puncture or completion of a course of therapy, consider coverage with another anticoagulant.
- Risk of Bleeding: XARELTO® increases the risk of bleeding and can cause serious or fatal bleeding. Promptly evaluate any signs or symptoms of blood loss and consider the need for blood replacement. Discontinue XARELTO® in patients with active pathological hemorrhage.
- A specific antidote for rivaroxaban is not available. Because of high plasma protein binding, rivaroxaban is not expected to be dialyzable.
- Concomitant use of other drugs that impair hemostasis increases the risk of bleeding. These include aspirin, P2Y12 platelet inhibitors, other antithrombotic agents, fibrinolytic therapy, NSAIDs, selective serotonin reuptake inhibitors (SSRIs), and serotonin nonselective reuptake inhibitors (SNRIs).
- Spinal/Epidural Anesthesia or Puncture: When neuraxial anesthesia (spinal/epidural anesthesia) or spinal puncture is performed, patients treated with anticoagulant agents for prevention of thromboembolic complications are at risk of developing an epidural or spinal hematoma, which can result in long-term or permanent paralysis. To reduce the potential risk of bleeding associated with the concomitant use of XARELTO® and neuraxial anesthesia or spinal puncture, consider the pharmacokinetic profile of XARELTO®. Placement or removal of an epidural catheter or lumbar puncture is best performed when the anticoagulant effect of XARELTO® is low; however, the exact timing to reach a sufficiently low anticoagulant effect in each patient is not known. An indwelling epidural or intrathecal catheter should not be removed before at least 2 half-lives have elapsed (ie, 18 hours in young patients aged 20 to 45 years and 26 hours in elderly patients aged 60 to 76 years), after the last administration of XARELTO®. The next XARELTO® dose should not be administered earlier than 6 hours after the removal of the catheter. If traumatic puncture occurs, delay the administration of XARELTO® for 24 hours. Should the physician decide to administer anticoagulation in the event of epidural or spinal anesthesia/analgésia or lumbar puncture, monitor frequently to detect any signs or symptoms of neurological impairment, such as midline back pain, sensory and motor deficits (numbness, tingling, or weakness in lower limbs), or bowel and/or bladder dysfunction. Instruct patients to immediately report if they experience any of the above signs or symptoms. If signs or symptoms of spinal hematoma are suspected, initiate urgent diagnosis and treatment including consideration for spinal cord decompensation even though such treatment may not prevent or reverse neurological sequelae.

Use in Patients With Renal Impairment:
- Nonvalvular Atrial Fibrillation: Periodically assess renal function as clinically indicated (ie, more frequently in situations in which renal function may decline) and adjust therapy accordingly. Consider dose adjustment or discontinuation of XARELTO® in patients who develop acute renal failure while on XARELTO®.
- Treatment of Deep Vein Thrombosis (DVT), Pulmonary Embolism (PE), and Reduction in the Risk of Recurrence of DVT and of PE: Avoid the use of XARELTO® in patients with CrCl <30 mL/min due to an expected increase in rivaroxaban exposure and pharmacodynamic effects in this patient population.
- Prophylaxis of Deep Vein Thrombosis Following Hip or Knee Replacement Surgery: Avoid the use of XARELTO® in patients with CrCl <30 mL/min due to an expected increase in rivaroxaban exposure and pharmacodynamic effects in this patient population. Observe closely and promptly evaluate any signs or symptoms of blood loss in patients with CrCl 30 to 50 mL/min. Patients who develop acute renal failure while on XARELTO® should discontinue the treatment.

Use in Patients With Hepatic Impairment: No clinical data are available for patients with severe hepatic impairment. Avoid use of XARELTO® in patients with moderate (Child-Pugh B) and severe (Child-Pugh C) hepatic impairment or with any hepatic disease associated with coagulopathy, since drug exposure and bleeding risk may be increased.

Use With P-gp and Strong CYP3A4 Inhibitors or Inducers: Avoid concomitant use of XARELTO® with drugs that are known to moderate P-gp and strong CYP3A4 inducers.

Risk of Pregnancy-Related Hemorrhage: In pregnant women, XARELTO® should be used only if the potential benefit justifies the potential risk to the mother and fetus. XARELTO® dosing in pregnancy has not been studied. The anticoagulant effect of XARELTO® cannot be monitored with standard laboratory testing nor readily reversed. Promptly evaluate any signs or symptoms suggesting blood loss (eg, a drop in hemoglobin and/or hematocrit, hypotension, or fetal distress).

Patients With Prosthetic Heart Valves: The safety and efficacy of XARELTO® have not been studied in patients with prosthetic heart valves. Therefore, use of XARELTO® is not recommended in these patients.

Acute PE in Hemodynamically Unstable Patients/Patients Who Require Thrombolysis or Pulmonary Embolectomy: Initiation of XARELTO® is not recommended acutely as an alternative to unfractionated heparin in patients with pulmonary embolism who present with hemodynamic instability or who may receive thrombolysis or pulmonary embolectomy.

DRUG INTERACTIONS
- Combined P-gp and strong CYP3A4 inhibitors increase exposure to rivaroxaban and may increase the risk of bleeding.
- Combined P-gp and strong CYP3A4 inducers decrease exposure to rivaroxaban and may increase the risk of thromboembolic events.
- XARELTO® should not be used in patients with CrCl 15 to <80 mL/min who are receiving concomitant combined P-gp and moderate CYP3A4 inhibitors (eg, erythromycin) unless the potential benefit justifies the potential risk.
- Coadministration of enoxaparin, warfarin, aspirin, clopidogrel, and chronic NSAID use may increase the risk of bleeding.
- Avoid concurrent use of XARELTO® with other anticoagulants due to increased bleeding risk, unless benefit outweighs risks. Promptly evaluate any signs or symptoms of blood loss if patients are treated concomitantly with aspirin, other platelet aggregation inhibitors, or NSAIDs.

USE IN SPECIFIC POPULATIONS
- Pregnancy: The limited available data on XARELTO® in pregnant women are insufficient to determine a drug-associated risk of adverse developmental outcomes. Use XARELTO® with caution in pregnant patients because of the potential for pregnancy-related hemorrhage and/or emergent delivery with an anticoagulant that is not readily reversible. The anticoagulant effect of XARELTO® cannot be reliably monitored with standard laboratory testing. Consider the benefits and risks of XARELTO® for the mother and possible risks to the fetus when prescribing XARELTO® to a pregnant woman.
- Fetal/Neonatal adverse reactions: Based on the pharmacologic activity of Factor Xa inhibitors and the potential to cross the placenta, bleeding may occur at any site in the fetus and/or neonate.
- Labor or delivery: The risk of bleeding should be balanced with the risk of thrombotic events when considering the use of XARELTO® in this setting.
- There are no adequate or well-controlled studies of XARELTO® in pregnant women, and dosing for pregnant women has not been established. Post-marketing experience is currently insufficient to determine a rivaroxaban-associated risk for major birth defects or miscarriage.
- Lactation: Rivaroxaban has been detected in human milk. There are insufficient data to determine the effects of rivaroxaban on the breastfed child or on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for XARELTO® and any potential adverse effects on the breastfed infant from XARELTO® or from the underlying maternal condition.
- Females and Males of Reproductive Potential: Females of reproductive potential requiring anticoagulation should discuss pregnancy planning with their physician.
- Pediatric Use: Safety and effectiveness in pediatric patients have not been established.

OVERDOSAGE
- Discontinue XARELTO® and initiate appropriate therapy if bleeding complications associated with overdose occur. A specific antidote for rivaroxaban is not available. The use of activated charcoal to reduce absorption in case of XARELTO® use may increase the risk of bleeding.

ADVERSE REACTIONS IN CLINICAL STUDIES
- The most common adverse reactions with XARELTO® were bleeding complications. Please see accompanying Brief Summary of full Prescribing Information, including Boxed WARNINGS, or visit www.XareltoHCP.com/PI.

XARELTO® is licensed from Bayer HealthCare AG, 51368 Leverkusen, Germany. © Janssen Pharmaceuticals, Inc. 2018 April 2018 cp-49783v1

Xarelto®

Janssen Pharmaceuticals, Inc.

Xarelto® is licensed from Bayer HealthCare AG, 51368 Leverkusen, Germany. © Janssen Pharmaceuticals, Inc. 2018 April 2018 cp-49783v1

brief summary of prescribing information for XARELTO® (rivaroxaban) tablets

WARNINGS:

A. Premature Discontinuation of XARELTO® Increases the Risk of Recurrent VTE.

Premature discontinuation of any oral anticoagulant, including XARELTO®, is discouraged. The non-accrual of an anticoagulant effect in each patient is not known.

When XARELTO® is discontinued for a reason other than pathological bleeding, patients may have contributed events to multiple subgroups.

INDICATIONS AND USAGE

- **Reduction of Risk of Stroke and Systemic Embolism in Nonvalvular Atrial Fibrillation (NVAF):**
 - XARELTO® is indicated for the prophylaxis of deep vein thrombosis (DVT) following hip or knee replacement surgery.
 - XARELTO® is indicated for the treatment of DVT and pulmonary embolism (PE).
 - XARELTO® is indicated for the prophylaxis of PE in patients with nonvalvular atrial fibrillation.
 - XARELTO® is indicated for the treatment of PE in patients with nonvalvular atrial fibrillation.

WARNING:

- **Risk of Hemorrhagic Events:**
 - The risk of hemorrhagic events increases with the dose of XARELTO®.
 - The risk of major bleeding increases with the dose of XARELTO®.

PRECAUTIONS

- **Fractures:**
 - The risk of fractures may be increased in patients treated with XARELTO®.

ADVERSE REACTIONS

- **Hemorrhage:**
 - Major hemorrhage: 3% vs. 2% for rivaroxaban and warfarin, respectively.
 - Non-fatal intracranial hemorrhage: 0.2% vs. 0.1% for rivaroxaban and warfarin, respectively.

DRUG INTERACTIONS

- **CYP3A4 Inhibitors and Inducers:**
 - Use with caution.

CONTRAINDICATIONS

- **Contraindicated in Patients with:**
 - Current or recent intracranial hemorrhage.
 - Recent head trauma.
 - Active bleeding.

DESCRIPTION

- **Rivaroxaban:**
 - Rivaroxaban is a direct factor Xa inhibitor.

CLINICAL PHARMACOLOGY

- **Pharmacokinetics:**
 - Rivaroxaban is rapidly absorbed after oral administration.
 - The terminal elimination half-life of rivaroxaban is approximately 11 hours.

INDICATIONS AND USAGE

- **Reduction of Risk of Stroke and Systemic Embolism in Nonvalvular Atrial Fibrillation (NVAF):**
 - XARELTO® is indicated for the prophylaxis of DVT and PE in patients with NVAF.
 - XARELTO® is indicated for the treatment of DVT and PE in patients with NVAF.

ADVERSE REACTIONS

- **Hemorrhage:**
 - Major hemorrhage: 3% vs. 2% for rivaroxaban and warfarin, respectively.
 - Non-fatal intracranial hemorrhage: 0.2% vs. 0.1% for rivaroxaban and warfarin, respectively.

CONTRAINDICATIONS

- **Contraindicated in Patients with:**
 - Current or recent intracranial hemorrhage.
 - Recent head trauma.
 - Active bleeding.

DESCRIPTION

- **Rivaroxaban:**
 - Rivaroxaban is a direct factor Xa inhibitor.

CLINICAL PHARMACOLOGY

- **Pharmacokinetics:**
 - Rivaroxaban is rapidly absorbed after oral administration.
 - The terminal elimination half-life of rivaroxaban is approximately 11 hours.

INDICATIONS AND USAGE

- **Reduction of Risk of Stroke and Systemic Embolism in Nonvalvular Atrial Fibrillation (NVAF):**
 - XARELTO® is indicated for the prophylaxis of DVT and PE in patients with NVAF.
 - XARELTO® is indicated for the treatment of DVT and PE in patients with NVAF.

ADVERSE REACTIONS

- **Hemorrhage:**
 - Major hemorrhage: 3% vs. 2% for rivaroxaban and warfarin, respectively.
 - Non-fatal intracranial hemorrhage: 0.2% vs. 0.1% for rivaroxaban and warfarin, respectively.

CONTRAINDICATIONS

- **Contraindicated in Patients with:**
 - Current or recent intracranial hemorrhage.
 - Recent head trauma.
 - Active bleeding.

DESCRIPTION

- **Rivaroxaban:**
 - Rivaroxaban is a direct factor Xa inhibitor.

CLINICAL PHARMACOLOGY

- **Pharmacokinetics:**
 - Rivaroxaban is rapidly absorbed after oral administration.
 - The terminal elimination half-life of rivaroxaban is approximately 11 hours.
Table 4: Bleeding Events in Patients with/Omitting Regimen Interruption

<table>
<thead>
<tr>
<th>Event</th>
<th>XARELTO 20 mg</th>
<th>Enoxaparin N=1206</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major bleeding</td>
<td>3 (0.2)</td>
<td>1 (<0.1)</td>
<td></td>
</tr>
<tr>
<td>Major bleeding during surgical intervention</td>
<td>1 (0.1)</td>
<td>2 (<0.2)</td>
<td></td>
</tr>
<tr>
<td>Major bleeding which is not fatal</td>
<td>1 (0.1)</td>
<td>1 (<0.1)</td>
<td></td>
</tr>
<tr>
<td>Major bleeding (serious)</td>
<td>3 (0.2)</td>
<td>3 (0.2)</td>
<td></td>
</tr>
<tr>
<td>All bleeding events</td>
<td>2 (0.2)</td>
<td>1 (<0.1)</td>
<td></td>
</tr>
<tr>
<td>Any bleeding event‡</td>
<td>201 (6.1)</td>
<td>191 (5.8)</td>
<td></td>
</tr>
<tr>
<td>Any bleeding event‡ plus any bleeding into a critical organ</td>
<td>3 (0.1) 1 (<0.1)</td>
<td>1 (<0.1)</td>
<td></td>
</tr>
<tr>
<td>Any bleeding event‡ plus any bleeding that required re-operation</td>
<td>2 (0.1)</td>
<td>1 (<0.1)</td>
<td></td>
</tr>
<tr>
<td>Bleeding that required re-operation</td>
<td>30 (5.5)</td>
<td>10 (2.6)</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Other Adverse Drug Reactions Reported in ≥ 1% of XARELTO-Treated Patients in EINSTEIN DVT and EINSTEIN PE Studies

<table>
<thead>
<tr>
<th>Reactions</th>
<th>XARELTO 20 mg</th>
<th>Enoxaparin N=1206 N=1718</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain</td>
<td>24 (1.2)</td>
<td>27 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Back pain</td>
<td>25 (1.3)</td>
<td>31 (1.8)</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>24 (1.4)</td>
<td>15 (0.9)</td>
<td></td>
</tr>
<tr>
<td>Immunosuppressive and miscellaneous disorders</td>
<td>10 (0.6)</td>
<td>9 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Inflammarory disorder</td>
<td>22 (1.2)</td>
<td>21 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Malignancies</td>
<td>30 (1.6)</td>
<td>32 (1.9)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>13 (0.7)</td>
<td>13 (0.7)</td>
<td></td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>74 (1.7)</td>
<td>55 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Pruritus</td>
<td>53 (2.2)</td>
<td>27 (1.1)</td>
<td></td>
</tr>
<tr>
<td>Radiation</td>
<td>5 (0.3)</td>
<td>5 (0.3)</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>64 (3.1)</td>
<td>34 (1.9)</td>
<td></td>
</tr>
<tr>
<td>Respiratory disorder</td>
<td>13 (0.7)</td>
<td>5 (<0.1)</td>
<td></td>
</tr>
<tr>
<td>Stomatitis</td>
<td>6 (0.3)</td>
<td>8 (<0.1)</td>
<td></td>
</tr>
<tr>
<td>Stomach pain</td>
<td>46 (2.7)</td>
<td>25 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Stupor</td>
<td>29 (1.6)</td>
<td>27 (1.6)</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous disorders</td>
<td>10 (0.6)</td>
<td>10 (0.6)</td>
<td></td>
</tr>
<tr>
<td>Tachycardia</td>
<td>7 (0.4)</td>
<td>5 (<0.1)</td>
<td></td>
</tr>
<tr>
<td>Tachypnea</td>
<td>19 (1.1)</td>
<td>16 (0.9)</td>
<td></td>
</tr>
<tr>
<td>Urogenital disorders</td>
<td>21 (1.2)</td>
<td>17 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Urticaria</td>
<td>14 (0.8)</td>
<td>7 (<0.1)</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>3 (0.2)</td>
<td>1 (<0.1)</td>
<td></td>
</tr>
<tr>
<td>Headache (postoperative)</td>
<td>15 (0.9)</td>
<td>18 (1.1)</td>
<td></td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td>3 (0.2)</td>
<td>5 (<0.1)</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>70 (3.6)</td>
<td>66 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative)</td>
<td>10 (0.6)</td>
<td>15 (0.9)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>11 (0.6)</td>
<td>1 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Nausea (postoperative due to vomiting)</td>
<td>24 (1.4)</td>
<td>20 (1.2)</td>
<td></td>
</tr>
</tbody>
</table>

*Adverse reaction with Relative Risk >15 for XARELTO versus comparator.

**Non-hematogenic adverse reactions reported in ≥ 1% of XARELTO-treated patients in RECORD 1-3 studies are shown in Table 6.
How is ACEP Directly Affecting Your Practice?

ACEP leadership and staff works every day to make change at the highest levels that will affect all levels of your practice. Catch up on what leadership has done for you lately in the Leadership Report (acep.org/leadershipreport).

ACEP Board of Directors member Mark S. Rosenberg, DO, MBA, FACEP, has been appointed to the Department of Health and Human Services’ Pain Management Best Practices Inter-Agency Task Force (PTMF). The PTMF was created to determine whether there are gaps or inconsistencies in pain management best practices among federal agencies and to propose recommendations for addressing identified gaps and/or inconsistencies.

ACEP and the Centers for Medicare and Medicaid Services (CMS) Center for Clinical Standards and Quality (CCSQ) met on March 1 to discuss quality measures policy, process, and the future vision for CMS’ approach to meaningful measures. The meeting was very productive and provided insight to the ACEP team in preparation for developing the next generation of quality measures, validating existing measures, and assessing their applicability to ACEP’s Quality Clinical Data Registry, known as Clinical Emergency Data Registry (CEDR).

Laura Wooster, ACEP’s associate executive director of public affairs, represented ACEP in a day-long meeting in Washington, D.C., held by HHS’ Assistant Secretary for Preparedness and Response, Robert Kadlec, MD, to gain stakeholder input on how to implement his vision for a national medical disaster system. Dr. Kadlec will be sharing more on this vision for a national medical disaster system during the ACEP Advocacy Conference on May 21.

ACEP Board member Jon Mark Hirshon MD, PhD, MPH, FACEP, participated in a roundtable held by the House Ways & Means Health Subcommittee on its “Red Tape Initiative” to reduce provider administrative burdens. Dr. Hirshon talked about administrative burdens in the Medicare program that challenge prudent layperson. Watch it at youtube.com/watch?v=dI0wA4uUI0.

Dr. Mark Rosenberg (left) and Dr. Alexis LaPietra developed the Alternatives to Opioids protocol at St. Joseph’s Regional Medical Center.

College of Radiology in a joint letter to An- ther Chief Clinical Officer Craig Sammit, MD, to state concerns with the insurer’s policy retro-actively denying coverage for emergency visits it deems as non-emergency. ACEP also has worked closely on the Anthem issue with Senators Ben Cardin of Maryland and Claire McCaskill of Missouri, who wrote a joint letter to HHS Secretary Alex Azar and Department of Labor Secretary Alexander Acosta expressing concerns about the Anthem policy and seeking information on whether it violates federal laws or regulations.

Last week, two emergency medicine opioid bills that ACEP was heavily involved in developing were introduced in Congress. The “Al- ternatives to Opioids (ALTO) in the Emergency Department Act” would provide $30 million (over three years) to establish a demonstration program to nationally test the ALTO protocol developed at St. Joseph’s Regional Medical in Paterson, New Jersey, by Dr. Rosenberg and Alexis M. LaPietra, DO, medical director of emergency medicine pain management at St. Joseph’s. The program uses alternative pain management protocols to limit the use of opioids in the emergency department. Additionally, the “Preventing Overdoses While in Emergency Rooms (POWER) Act” would provide $50 million (over five years) in grants to establish policies and procedures for adminis- tering medication-assisted treatment (MAT) in the emergency department to opioid overdose patients with subsequent referral to community providers.

ACEP President, Paul Kivela, MD, MBA, FACEP, was formally invited by the National Academy of Sciences (NAS) to participate in a panel to discuss “Leading Changes at the Ground Level” of clinical medicine/healthcare administration at the workshop titled, “Engaging the Private Sector Health Care System in Building Capacity to Respond to Threats to the Public’s Health and National Security.” Dr. Kivela worked with ACEP’s EMS and Disaster Sections for his discussions.

In July, ACEP joined with the American Hospital Association and the American College of Emergency Physicians in a joint letter to the House Ways and Means Health Subcommittee.
THE NATIONAL EMERGENCY MEDICINE BOARD REVIEW COURSE

If You Don’t Pass, You Don’t Pay! | Content Updated for 2018

2018 COURSE DATES

JULY 26-29, 2018
CAESARS PALACE
LAS VEGAS, NV

AUG. 11-14, 2018
RENAISSANCE BALTIMORE
HARBORPLACE HOTEL
BALTIMORE, MD

AUG. 27-30, 2018
PLANET HOLLYWOOD
LAS VEGAS, NV

The Course That Has Helped Tens of Thousands of Emergency Physicians Ace Their ABEM/AOBEM Certifying and Recertifying Exams.

Take Your ConCert™ Exam up to 5 Years Early and Be Recertified for up to 15 Years! See the ABEM Website for Details

LIVE COURSE
Get away from all distractions and receive an immersive, concentrated study at one of our live courses.

SELF-STUDY COURSE
Avoid missing family/work obligations and participate in the self-study course from the comfort of home.

Learn More Online at www.EMBoards.com/course
or Call 1-800-458-4779 (9:00am-4:30pm ET, M-F)

Over 1,700 Participants in 2017 (Over 30,000 Since Inception)

The Center for Emergency Medical Education (CEME) is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The Center for Emergency Medical Education (CEME) designates this live activity for a maximum of 34.75 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.
Will increasing access to health insurance decrease ED utilization by increasing access to primary care providers (PCPs)? On the other hand, does having health insurance make people more likely to visit the emergency department? These questions have important implications for ED capacity, quality of care, and future funding models.

When the Affordable Care Act (ACA) became law, differing opinions emerged about how it might affect ED utilization. Some argued that more insured patients would lead to better access to outpatient care and in need of care, which was seen in Massachusetts following the pre-ACA roll-out of their own state’s health insurance expansion (Romney-care). Others contended that more access to care would mean more usage of all types of care, resulting in increased ED visits, as 75 percent of emergency physicians believe.

ED Usage in Illinois
A recent study, an analysis of ED use before and after Affordable Care Act (ACA) implementation in Illinois, provides evidence against the assumption that ED use would decrease as newly-insured patients received care from PCPs instead of the emergency department, leading to more efficient and less costly health care. The authors analyzed ED visits across Illinois from 2011 to 2015, comprising 36 months prior to and 24 months following ACA implementation. Although the number of ED visits by uninsured patients dropped, visits by Medicaid and private insurance patients increased more substantially, leading overall to a 5.7 percent increase in ED usage. Meanwhile, visit acuity appeared to remain constant, as the number of hospitalizations through the emergency department was essentially unchanged throughout the study period.

This study indicates that increasing access to insurance alone does not lead to a decrease in ED visits, and similar results have been found in Massachusetts, Oregon, Kentucky, and Colorado. A program in Virginia offers an interesting alternative where, in addition to receiving health care, patients were assigned to PCPs. Although these PCPs were paid at rates higher than those offered by Medicaid, cost per patient had decreased significantly after three years of the program. These potentially counterintuitive results highlight the complexity of health care reform. While providing health insurance may lead to fewer ED visits for some patients (i.e., young adults), that effect does not hold universally. Of course, this immediate increase in ED use may be an anomaly in a long-term trend toward less ED use, though studies from Oregon have shown this effect to be long lasting. Additionally, there may be benefits to health insurance (i.e., financial security, increased PCP visits, or potentially improved overall health) that are not captured in this study. However, while removing financial barriers to receiving care is likely an important part of reforming our health care system, this study indicates that health insurance expansion alone is unlikely to lead to more efficient health care delivery through reduced ED usage.

ED Utilization Trends
Another study investigated changes in ED utilization rates at a national level based on the hypothesis that increases in Medicaid-covered populations would result in proportional increases in ED visits. They also predicted a change in the payer mix that would result in fewer uninsured visits and more Medicaid-covered visits. States that opted not to expand Medicaid coverage under the ACA served as the control group.

Overall, the authors estimated 10 additional ED visits per 1,000 people. As predicted, Medicaid expansion resulted in more visits by patients with Medicaid. The proportion of visits covered by Medicaid increased from 35 percent pre-ACA to 48 percent during the study. The authors argue that some of this increase may be temporarily caused by pent-up demand from patients who needed health care but could not afford it prior to the ACA. A reciprocal decrease in the proportion of uninsured visits was noted (from 23 percent down to 11 percent).

Further analyzing the data provides interesting insights into the chief complaints that became more common for patients with Medicaid. The largest increases were for dental and mental health visits, which aligns with the disproportionate number of Medicaid-eligible patients who report less than excellent mental health. Naturally, increased visits raise questions about the effects on emergency departments. Without an increase in capacity, more visits may mean overcrowding, decreased quality of care, and worse patient outcomes. Changes in payer mix affect the hospital’s bottom line, since Medicaid generally reimburses less than private insurance. However, Medicaid reimbursement is higher than that from self-pay patients. Furthermore, recognizing that there are fewer uninsured patients, the ACA reduces payments for hospitals serving a disproportionately high level of uninsured patients. The balance of these clinical and financial forces should continue to be explored.

References
2. ACEP. ER visits continue to rise since implementation of Affordable Care Act. ACP website. Available at http://newsroom.acep.org/2015/05/04-ER-Visits-

“New Spin” is the personal perspective of the author and does not represent an official position of ACEP Now or ACEP.
2018 Course Topics

- Which Dizzy Patient Needs an MRI?
- ACS – The First Hours of Care
- Acute Heart Failure: Diagnostic Pearls
- Acute Heart Failure: Therapeutic Pearls
- Role of the ED in Non-Heart-Beating Donors
- Skin and Soft Tissue Infection Pearls
- Unusual But Important Cardiac Syndromes - Part 1
- Unusual But Important Cardiac Syndromes - Part 2
- Pneumonia Care Controversies
- New ED Gizmos and Gadgets
- Low-Risk Chest Pain – Who Goes Home?
- Pearls from ED Leadership Monthly - Part 1
- Pearls from ED Leadership Monthly - Part 2
- Syncope 2018: Is Anything New?
- Sexual / Racial / Ethnic Disparities in the ED
- Pearls from Risk Management Monthly - Part 1
- Pearls from Risk Management Monthly - Part 2
- Expanded ED Pain Management Options
- Acute Ischemic Conditioning for MIs and Stroke
- Pediatric Severe Asthma in the ED
- Ear, Nose and Throat Potpourri
- Endovascular Stroke Treatment Issues
- Integration of PAs and NPs into the ED
- Adverse Effects of Biologics Marketed on TV
- Adult Severe Asthma in the ED
- Practice-Changing Urology Pearls
- Visual Diagnosis Challenges - Part 1
- Visual Diagnosis Challenges - Part 2
- Important Recent EM Literature - Part 1*
- Important Recent EM Literature - Part 2*
- Hot Topics in Emergency Operations*
- Diagnostic and Therapeutic Controversies*

Topics listed with an asterisk () are 90-minute faculty panel discussions; all other topics are 30 minutes.

Experience the Course Enjoyed by Over 47,000 of Your Colleagues!

For Full Details and to Register, Visit www.EMAcourse.com or Call 1-800-458-4779 (9:00am-4:30pm ET, M-F)
A NEW SPIN: STROKE

CONTINUED FROM PAGE 1

ting from 6–24 hours of symptom onset have improved 90-day outcomes after mechanical thrombectomy compared to medical therapy alone.1

The DEFUSE3 trial showed similar results of improved outcomes with endovascular thrombectomy for ischemic stroke patients 6–16 hours after they were last known to be well.2 The patients best served featured proximal middle-cerebral-artery or internal-carotid-artery occlusion, and a region of tissue that was ischemic but not yet infarcted.

This evolving treatment paradigm, while groundbreaking, requires new emergency department and collaborative workflows to identify appropriate stroke patients and activate the correct treatment pathway.

A New Stroke Protocol
Stanford University’s department of emergency medicine collaborated closely with other departments to develop a novel Stroke Code Extended protocol that expedites evaluation and treatment of patients with large-vessel artery occlusion, and a region of tissue that is potentially reversible ischemia (penumbra). The protocol was crafted by a multidisciplinary team of stakeholders from the departments of neurology, emergency medicine, nursing, radiology, and hospital staff. We designed and implemented the new stroke code process using quality improvement principles, such as adherence to standard work, pre-existing protocol preservation, planned outcome measures, and widespread education. Mock code simulations provided iterative feedback before we launched the process.

The team created the protocol for patients presenting with stroke symptoms at 8–24 hours without changing the pre-existing code process for patients presenting before 8 hours. Emergency physicians rapidly triage and activate all stroke codes if the patient presents as greater than or equal to 6 on the National Institutes of Health Stroke Scale (NIHSS). However, the new protocol excludes a bedside pharmacy evaluation and moves directly to alerting the stroke team to come to the patient’s bedside in the emergency department. [Editor’s Note: Visit ACEPNow.com to see a flowchart of Stanford’s new stroke protocol.]

Other unique protocol elements include expeditied CT angiogram and perfusion imaging, and mobilization of the interventional neuro-radiology team for thrombectomy. The CT angiogram and perfusion imaging is critical in determining the amount of brain tissue at risk of infarct, and therefore whether thrombectomy would be indicated. To determine patients appropriate for thrombectomy with adequate salvageable tissue, the team looks at the ratio of ischemic tissue to the initial infarct volume (ischemic core), and an absolute volume of potentially reversible ischemia (penumbra).

The Stroke Code Extended also requires the emergency department attending to perform and document a NIHSS score on all suspected stroke patients. Although this is a core emergency medicine skill, Stanford instituted an educational initiative to certify our entire faculty and residency in performing the assessment. This was accomplished through online training modules and traditional lecture-style didactics.

In addition, immediately upon arrival at the bedside, the neurology resident now performs an NIHSS stroke scale assessment. Our goal is to study the inter-rater reliability between neurology- and emergency medicine-completed NIHSS stroke scales.

Beyond the New Protocol
Parallel to our initiative to identify and treat extended strokes, Stanford’s neurology department has performed significant educational outreach to referral hospitals to facilitate the rapid transport of stroke patients to Stanford Hospital even if they’re outside the 4.5-hour window but still likely to benefit from thrombectomy. In addition, the Stanford School of Medicine has found that collaboration between the emergency medicine and neurology departments is instrumental in improving the treatment of acute stroke.

Looking ahead, we will evaluate the implementation of this protocol by collecting stroke quality metrics, measuring NIHSS inter-rater reliability, and monitoring the stroke mimic rate. We look forward to sharing further insights about our protocol and results.

References

SPEAK OUT ON STROKE

HAVE COMMENTS on extending the time window for thrombectomy? We want to hear from you! Send your comments to dantolin@wiley.com. We may publish them in a future issue.
Smashing the EM Glass Ceiling
The path to leadership in the 70s

by PAMELA P. BENSEN, MD, MS, FACEP

I stared attending ACEP Board of Directors (BOD) meetings in 1971 when Ron Krome, MD, invited me to the BOD meeting in Miami. He introduced me as the first intern in emergency medicine and got the board to add me to the Undergraduate Education Committee as their first resident representative, a commitment to residents that continues today.

ACEP was small then, about 300 members, and I met all the leaders and staff attending that third Scientific Assembly. I was hooked on ACEP.

I met new members as the college grew and was appointed to at least one ACEP committee every year. When the Council was created, I became the Maine Councilor, joining four other women on the Council floor. Seldom one to keep my opinions to myself, I spoke up at meetings and stayed in touch with the staff, board, and committee members.

So, imagine the thrill of answering the phone and hearing an ACEP Past President ask you to run for the ACEP BOD. Funny thing was, I never planned to run for the board until Karl Mangold, MD, called to ask me if the nominating committee could put my name on the ballot. I was overwhelmed and honored; my head grew three sizes that day.

Without another thought, I told him, “Of course, I would be delighted to run.”

Later, I explained to my husband, Kork, that no one got elected to the board on the first try, so we didn’t need to worry about the impact my rash answer would have on our young family or my job. We had two kids under seven and a house with a 100 percent mortgage. I had a 24-hour ED job, a 30 hours a week unpaid ED directorship, a volunteer EMS teacher-director position, ACEP committee assignments, and I was co-chairing the community 911 committee. Kork had just returned to work on tug boats after a two-year bout with Epstein-Barr virus-induced kidney and liver failure, a Guillain-Barre-like peripheral neuropathy, and was battling an addiction to corticosteroids.

Running for the Board Back Then
Being a board candidate was very different in the 70s. Campaigns were inexpensive and laid back. I did not have to travel to state chapter meetings—many states didn’t even have meetings. I only had to answer written questions and attend by-invitation-only big-state-chapter cocktail parties, which were held at the Scientific Assembly, to meet Councillors who didn’t know me.

In 1973, the board had appointed Ellen Taliaferro, MD, FACEP, to serve out the term of Stanley Gold, MD, when he resigned for health reasons. At age five, ACEP had its first woman board member. We never even thought about a glass ceiling—obviously there was not one.

However, it didn’t last. When Ellen ran for the seat she already occupied at the will of the board, the Council did not elect her. The Board had accepted women in leadership, but the Council had not.

As predicted, I lost that first election, the second, and the third. My years as a candidate were separated by years when three other women, Elizabeth Fields, MD, Dr. Taliaferro, and Vera Morkovin, MD, were nominated. They, too, lost their elections.

President after president put me on committees. As my experience increased, I was asked to chair committees. Year after year, I sat on the Council. Every two or three years the nominating committee would ask me to run for the board. Ever the optimist, I kept saying yes, and kept losing.

The year I ran and lost for the fourth time, I was greeted at the post-Council reception by a fellow Councillor. He commiserated that I was the most qualified candidate, “But, you know us southern gentlemen, we jus’ couldn’t vote for a woman.” I was saved from assault and battery charges because my right arm, linked in my husband’s, was suddenly immobilized by his.

The nominating committee did not skip a beat. The very next year, they asked me to run again. I was not, as I assured them, a glutton for punishment; I refused. I relented only after three members of the committee called to assure me I was not being asked to be the token female, destined to be led to rejection once again. The committee had discussed the gender situation and my qualifications and was sure I would be elected.

My fifth campaign was different. I decided to confront the gender issue head on. I wanted to make sure the Council saw their glass ceiling. At the meet-the-candidates forum, which had been co-opted from the small chapters event I had started, we were asked what we brought to the board that no one else had. I responded, “I bring a broad perspective,” listed my ACEP committee history, detailed the projects I had worked on for the College, and finished my answer with “and I have more estrogen than anyone else running.” My serious humor did get a good laugh.

For my closing remarks, at the risk of offending my southern colleague who “jus’ couldn’t vote for a woman,” I repeated that story from my previous loss. I concluded with, “I’m not asking you to vote for me because I am a woman, I am asking you not to vote against me because I am a woman.”

“I’m not asking you to vote for me because I am a woman, I am asking you not to vote against me because I am a woman.”

—Pamela P. Bensen, MD, MS, FACEP

Pamela Bensen, MD, MS, FACEP receiving the Council Meritorious Service Award from ACEP cofounder John A. Rupke, MD.
ACEP Board Most Diverse Ever

by PAUL KIVELA, MD, FACEP, ACEP PRESIDENT

For the first time in ACEP’s history, our Board of Directors truly reflects the diverse membership of the College.

There are 15 members of the Board of Directors and five of them are female. This is the most female physicians ACEP has ever had on its Board at one time. There are Board members with a variety of racial, ethnic, and religious backgrounds.

One Board member is under 40, and five are 60 or older. Nearly all geographic areas of the country are represented.

In addition to being attending physicians, there are seven Board members who hold academic physician positions. Some are emergency department directors or EMS directors. Others hold various emergency medicine administration positions in addition to their practice.

They come from a variety of practice settings, including small independent groups, large emergency physician groups, community hospitals, urban trauma centers, university academic institutions, military hospitals, freestanding emergency departments, and even one rural setting. Members of our Board understand the practice environments of our members.

With this unprecedented diversity and inclusiveness of our ACEP Board, we are able to be more responsive to the diverse needs and perspectives of our members.

GEOGRAPHIC REPRESENTATION

GENDER

33% FEMALE

AGE

60s |

50s |

40s |

30s |

PRACTICE SETTING

ACADEMIC |

MILITARY |

LARGE GROUP |

SMALL GROUP |

SKILLS AND EXPERTISE

Hospital Medical Staff Leadership
State/County Medical Society Leadership
Coordinations with Other Groups
Young Physician Perspective

Reimbursement
Federal Advocacy
Quality
ED Operations
Financial
Research
Multi-Specialty Management
State Advocacy
Management
Coding
Teaching
EMS Negotiations with Payers
Opioids
Clinical Policies - Rural Perspective
Business Ownership

Satisfy Your CME Requirements Quickly & Easily Online

Learn from the experts and gain confidence to treat even the most difficult emergencies with ACEP’s online education.

More than 150 courses to choose from – many FREE!

850 hours of online education

ACEP.org/ACEPeCME

*Custom Learning Programs and Group Rates Available

& The Official Voice of Emergency Medicine
HIGH RISK EMERGENCY MEDICINE

New lectures to help reduce risk to you and your patients!

May 22 – 23, 2018
New Orleans, LA
The Ritz-Carlton

September 17 – 18, 2018
Las Vegas, NV
Caesars Palace

More than 12,500 of your colleagues have attended this course!

“The HREM faculty are authentic-‘been there’, current, and engaging…”
“... a MUST for new and seasoned physicians alike!”
“Fantastic... Best CME I have ever been to...”

Attend Our Popular Mock-Deposition
It’s fun to watch a deposition when it’s not your own!

For more information on all CEME Courses, call toll-free:

(800) 651-CEME (2363)

To register online, visit our website at: www.ceme.org
Human trafficking is an incredibly challenging problem to solve because it hides in the shadows. Not only are traffickers motivated to keep their activities under the radar of law enforcement, but often victims are too. Cynthia M. Deitle, JD, spent two decades with the FBI’s civil rights program, which includes a program to combat human trafficking. Her experience ranged from working on individual trafficking cases to being chief of the civil rights unit, giving her a broad understanding of the trafficking problem in the United States and the bureau’s efforts to combat it. She recently sat down with ACEP Now Medical Editor-in-Chief Kevin Klauer, DO, EID, FACEP, to talk about some of the challenges she faced while trying to help trafficking victims, and what emergency department staff can use to try to help suspected victims. Here’s an excerpt from that conversation. Visit ACEPNow.com to read Parts 1 and 2 of the interview.

KK: Once we have the possible victim alone, should we be very direct or a bit more methodical and caring approach, then you let her do it her way. Or you may have other people just come right out and say, “Honey, who is that guy in the waiting room, he’s not your husband. What is going on?” And that might work. It’s very personally driven, and it’s very situation specific. Go with your strength.

CD: This will be one of those answers every lawyer and doctor hates: It depends. It depends on the person asking the questions. If you have one of your nurses in the ER who has been there for 20 years, and she is phenomenal at getting victims of domestic violence and human trafficking to talk to her due to a slow, methodical and caring approach, then you let her do it her way. Or you may have other people just come right out and say, “Honey, who is that guy in the waiting room, he’s not your husband. What is going on?” And that might work. It’s very personally driven, and it’s very situation specific. Go with your strength.

As an FBI agent, I’ve been in ERs and I know that intake questioning list can be fine-tuned to get at the trafficking situation. “So, are you safe in your home?” She will lie to you and say, “Yes.” If you just keep drilling into her domestic situation, you might be able to get at it. “So who lives in your home with you?” Well, right away, Kevin, that presumes she has a home. These domestic trafficking victims don’t have a home. They go from hotel to hotel to hotel. “Are you safe in your home? Where do you live? How long have you lived there? Do you rent?” Really try to delve into tripping her up in the answers and getting her to admit what’s going on. That’s really the key, along with asking her who else you should call. “Is there a grandmother, an aunt, a teacher? Is there somebody else I can call who can come down and be with you? You don’t have to stay with him.”

CD: This will be one of those answers every lawyer and doctor hates: It depends. It depends on the person asking the questions. If you have one of your nurses in the ER who has been there for 20 years, and she is phenomenal at getting victims of domestic violence and human trafficking to talk to her due to a slow, methodical and caring approach, then you let her do it her way. Or you may have other people just come right out and say, “Honey, who is that guy in the waiting room, he’s not your husband. What is going on?” And that might work. It’s very personally driven, and it’s very situation specific. Go with your strength.
“Resuscitate” was tattooed across his anterior chest wall, accompanied by his presumed signature.

Without the guidance of next of kin or advanced directive paperwork, the health care team initially decided not to honor the DNR tattoo. However, they later reversed their decision and honored the tattoo after an ethics consultation. The ethics consultants concluded that the tattoo could be presumed to represent the patient’s authentic preferences and that the “law is sometimes not nimble enough to support patient-centered care and respect for patients’ best interest.” The conclusion of the ethics consultants should not set a precedent for future similar cases, as the DNR tattoo was neither legally nor ethically sufficient to guide medical care.

Before delving into the specific insufficiencies of the tattoo, it is useful to review advance care planning (ACP). There are two main forms of ACP documents: advance directives (AD) and physician orders for life sustaining treatment (POLST). ADs are legal documents that can be completed at any time in life to guide future care and/or appoint a surrogate decision maker. ADs must be completed by the person (him/herself) and require either a witness or notary, depending on the state. POLST forms are physician orders for end-of-life (EOL) care designed to be transferred among health care institutions. They are for patients who are seriously ill or frail who are near the EOL and can be completed with the assistance of a surrogate. Table 1 summarizes the differences between ADs and POLST.

The “Do Not Resuscitate” tattoo in the article is neither legally nor ethically sufficient to guide medical care for the following reasons:

1. Tattoos are not legal ADs nor POLST, which are the two ACP documents transferrable among institutions in the United States.

Before delving into the specific insufficiencies of the tattoo, it is useful to review advance care planning (ACP). There are two main forms of ACP documents: advance directives (AD) and physician orders for life sustaining treatment (POLST). ADs are legal documents that can be completed at any time in life to guide future care and/or appoint a surrogate decision maker. ADs must be completed by the person (him/herself) and require either a witness or notary, depending on the state. POLST forms are physician orders for end-of-life (EOL) care designed to be transferred among health care institutions. They are for patients who are seriously ill or frail who are near the EOL and can be completed with the assistance of a surrogate. Table 1 summarizes the differences between ADs and POLST.

The “Do Not Resuscitate” tattoo in the article is neither legally nor ethically sufficient to guide medical care for the following reasons:

1. Tattoos are not legal ADs nor POLST, which are the two ACP documents transferrable among institutions in the United States.
States. The tattoo cannot be considered a wearable AD, as it does not include a witness or notary to complete the legal documentation.

2. Informed decision-making cannot be presumed. Studies have reported that patients have a poor understanding of EOL care terminology, and only about half of emergency department patients surveyed had a correct understanding of the term “Do Not Resuscitate.” There is no evidence that the tattoo indicates a clear understanding of a DNR status.

3. The tattoo contains insufficient information to guide medical treatment. Does the patient mean no chest compressions, no intubation, no vasopressors? ADs and POLSTs clarify preferences so that providers can better interpret patient wishes, although confusion may still arise as to whether specific interventions are desired.

4. EOL care preferences are dynamic. Depending on factors such as age, health status, prognosis, and advancement of medical technology, a person’s EOL preferences may change. In contrast to a tattoo, ADs and POLST forms may be easily amended to reflect a patient’s current wishes.

5. Tattoo regret is common. More than 50 percent of individuals later regret their tattoos. The most frequent motivation for tattoo removal is poor decision making, often the result of intoxication, leading to subsequent regret. A case report of a DNR tattoo that did not represent a patient’s current wishes has previously been reported.

An important ethical principle for emergency physicians to consider is that withholding and withdrawing life-sustaining treatment are considered ethically equivalent. Therefore, when faced with ambiguity regarding a patient’s wishes, emergency physicians should proceed with life-saving interventions. When further information is obtained, the patient’s care can be appropriately de-escalated in accordance with their preferences. A default to proceeding with life-sustaining measures does not mean that tattoos or other non-standard means of communicating preferences should be ignored. The tattoo, an alternative form of communication, should be used as piece of information in the decision-making process. A major limitation of AD and POLST documents is that in most states they must physically accompany the patient and are often not available when providers are making key decisions.

Some states, such as Oregon and California, have electronic databases that providers can access, but the lack of this type of accessible database may cause patients to be concerned that their wishes may not be known. In our era of smartphones, patients should be encouraged to enter “ICE” (In Case of Emergency) data into their phones, which can include medical information and emergency contacts. Emergency providers should also be encouraged to routinely search for available ICE data on the phones of incapacitated patients.

Table 1: Comparison of ADs and POLST

<table>
<thead>
<tr>
<th>AD</th>
<th>POLST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document type</td>
<td>Physician orders</td>
</tr>
<tr>
<td>Purpose</td>
<td>Give medical orders for EOL care</td>
</tr>
<tr>
<td>For whom</td>
<td>Patients near the EOL</td>
</tr>
<tr>
<td>Time of completion</td>
<td>Near the EOL</td>
</tr>
<tr>
<td>Decision-maker</td>
<td>Patient or surrogate</td>
</tr>
<tr>
<td>Additional requirements</td>
<td>Physician signature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decision-Making Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNR tattoo</td>
</tr>
<tr>
<td>AD</td>
</tr>
<tr>
<td>POLST</td>
</tr>
</tbody>
</table>

A default to proceeding with life-sustaining measures does not mean that tattoos or other non-standard means of communicating preferences should be ignored. The tattoo, an alternative form of communication, should be used as piece of information in the decision-making process. A major limitation of AD and POLST documents is that in most states they must physically accompany the patient and are often not available when providers are making key decisions.

Some states, such as Oregon and California, have electronic databases that providers can access, but the lack of this type of accessible database may cause patients to be concerned that their wishes may not be known. In our era of smartphones, patients should be encouraged to enter “ICE” (In Case of Emergency) data into their phones, which can include medical information and emergency contacts. Emergency providers should also be encouraged to routinely search for available ICE data on the phones of incapacitated patients.

References

DR. VÉARRIER is clinical assistant professor in the department of emergency medicine at Drexel University College of Medicine in Philadelphia.
GAME CHANGERS AND OTHER KEY STUDIES

Multicenter Trial of Rivaroxaban for Early Discharge of Pulmonary Embolism From the Emergency Department (MERCURY-PE)

Peacock W, Diersck D, Francis S, et al

This multicenter, prospective, open label, randomized clinical trial sought to determine what happens to low risk pulmonary embolism (PE) patients who are discharged home straight from the emergency department with rivaroxaban compared to standard care (SC; observation unit stay or inpatient admission).

Not surprisingly, mean total hospital days (for any reason) at 90 days after randomization were significantly less for rivaroxaban than SC, 0.8 versus 1.8 days. The composite safety endpoint was similar in both groups. This industry-funded study suggests that carefully selected patients with PE can be managed as outpatients from the emergency department.

Poon SJ, Schuur JD, Mehrotra A

This study examined an insurance database for visits related to three low-acuity complaints. They found not only that emergency departments were seeing a decreasing proportion of these types of visits, but also that this decrease was due to an increase in “new” visits to urgent care and retail clinics (additive visits, not substitution). Thus, these clinics did not “steal” visits from the emergency department, but “created” visits through supply-induced demand.

Association of State Gun Laws with Pediatric Mortality from Firearms

Patel SJ, Badolato G, Parikh K, et al

In this politically timely abstract, the authors analyzed Centers for Disease Control and Prevention (CDC) data for firearm-related mortality in children 0–21 years of age and measured whether there was a relationship to state-specific Brady Campaign Gun Law Scores for 2015.

The CDC noted that 4,528 children died from firearm-related injuries in 2015. Higher pediatric mortality rates were associated with lower (less strict) state-specific gun law scores. More specifically, median mortality rates were lower among the 12 states requiring universal background checks for firearm purchase (3.8 versus 5.7 per 100,000 children) and ammoniation (2.3 versus 5.6 per 100,000 children). Although observational, these data provide the best available evidence to guide policy development.

Effect of SEP-1 Core Measure Compliance on Mortality and Hospital Length of Stay

E.A. Gross, G. McGlynn

Fluid Resuscitation of Septic Patients at Risk for Fluid Overload

M. Akhter, M. Hallare, A. Roontiva, et al

We’ve all seen this patient: past medical history of congestive heart failure (CHF) and creatinine of 5.6 who presents in septic shock. The much-discussed SEP-1 quality metric mandates an intravenous fluid bolus (30 ml/kg), but clinicians fear causing pulmonary edema, leading to a need for intubation. These two abstracts look at institutional databases and found that even in patients with CHF and end-stage renal disease (ESRD), following SEP-1 decreased mortality. Furthermore, there was no increase in intubation in septic patients with CHF and ESRD when clinicians followed SEP-1.

While noting, once again, the caveat of observational data and likely inclusion bias, this still provides some reassurance to providers caring for septic patients with CHF or ESRD.

A Randomized Study of Naproxen Plus Placebo, Orphenadrine, or Methocarbamol for Acute Low Back Pain

Friedman BW, Trizuary, E, Solorzano, C, et al

Back pain continues to be a common reason for ED visits, and Dr. Friedman and colleagues continue to search for effective treatments. This double-blind trial randomized patients to receive naproxen plus a one-week supply of either orphenadrine (Noflex) 100mg, methocarbamol (Robaxin) 750mg, or placebo. Unfortunately, 34 percent of naproxen-placebo patients reported moderate or severe low back pain versus 33 percent of naproxen+orphenadrine and 39 percent of naproxen+ methocarbamol patients.

This study reinforces an approach that emphasizes nonsteroidal anti-inflammatory drugs and education for patients with musculoskeletal back pain.

Do Intranasal Vasoconstrictors Increase Blood Pressure?

Bellow SD, Johnson KI, Kummer T

This study calls to mind another common EM scenario: the epistaxis patient with severe hypertension. In this elegant randomized, double-blinded, placebo-controlled trial, a convenience sample of patients was assigned to one of four arms: phenylephrine 0.25%, oxymetazoline 0.05%, lidocaine 1% with epinephrine 1:100,000, or bactroban 0.9% sodium chloride in cotton soaked nasal pledgets. They did not find any changes in blood pressure over the 30 minutes after drug administration between any of the arms. This suggests that vasoconstrictors cause minimal acute blood pressure changes when applied nasally via soaked pledgets.

High Sensitivity Troponin T (hsTnT) Identifies Patients at Very Low Risk of Adverse Events

Peacock WF, Baumann BM, Bruton D, et al

There has been much literature published on the utility of high-sensitivity troponin assays. This study reports on their use in an American cohort. This Roche-funded study examined a three-hour protocol in 1,264 ED patients suspected of having acute coronary syndrome, finding that in the 974 (77.1 percent) patients expected of having acute coronary syndrome, 99.3 percent (95 percent CI, 99.05–99.55) would not have a three-hour hsTnT>19 ng/L, a 30-day adverse cardiac event occurred in seven patients for a negative predictive value of 99.3 percent (95 percent CI, 99.05–99.55).

Telehealth for Low-acuity EMS: One Fire-based System Experience with 10,000 Patients

Gonzalez MG, Persse DE, Gleisberg GR, et al

The Official Voice of Emergency Medicine

APRIL 2018

ACEP NOW 17
Tips to avoid bad airway vibes

by RICHARD M. LEVITAN, MD

Procedural sedation and emergency airway management are recognized risks to patient safety. Sedation, induction agents, and muscle relaxants can quickly impact oxygen saturation, and desaturation is often precipitous.

What contributes to the sorcery that seems to surround airway management and procedural sedation, and how can we avoid bad outcomes?

Gas Monitoring
First, recognize that with pulse oximetry, we use an imperfect monitor. It lags what’s happening in your patient by 30–90 seconds. Moreover, it does not give you an estimation of safe apnea time, even with high values (ie, 94–100 percent), because the asymptotic shape of the pulse oximeter curve displays saturation, not the amount of oxygen in the blood (ie, the partial pressure of O2 [PaO2] in a blood gas). A pulse oximeter reading of 95 percent may represent a PaO2 of 80, while a pulse oximeter reading of 100 percent can represent a PaO2 of anywhere from 95–600 (see Figure 1).

The argument for CO2 monitoring is that it monitors ventilation and therefore is immediate as well as forward looking. The problem: Most commonly used end-tidal CO2 detection methods (ie, small bore nasal cannulas) can’t provide higher flows (ie, >6 lpm) without popping off the oxygen source. Even if you rig a cannula or other mechanism to place the CO2 detector into or under a mask, high-flow oxygen given simultaneously affects CO2 detection.

Perhaps the easiest way around this is to use two cannulas—that is, with a low-flow cannula with end-tidal CO2 detection, and if you need higher flows, run oxygen through a standard nasal cannula previously placed on the patient (see Figure 2). Coming off the wall, a standard nasal cannula can deliver flows well above 50 lpm (even though the manometer only goes to 15 lpm) and as high as 70 lpm. “O’s up the nose” at these high flows can dramatically improve oxygenation, assuming the airway remains patent.

Divide the Airway
After more than twenty years of being airway obsessed, I recently began to gain a different perspective of the anatomy and clinical challenges of airway management. I believe it is useful to divide the airway into three sections to improve our anatomic understanding, and more importantly, to guide therapeutic intervention (see Figure 3):

1. The upper airway includes the nasopharynx, mouth, and the hypopharynx down to the larynx. The upper airway is the most common site of airway obstruction due to the soft tissue structures of the palate, tongue, and epiglottis.
2. The middle airway runs from the laryngeal cartilages (larynx) to the bronchi. It is normally patent, stented open by the rigidity of the thyroid and cricoid cartilage, and the tracheal rings.
3. The lower airway includes the lungs and alveoli, where gas absorption occurs across the alveolar-capillary membrane.

To decipher the sorcery of the airway, we must appreciate how sedation, positioning, and our therapeutic interventions and techniques affect the airway at all three levels. Gravity is the enemy of both upper and lower airway patency when the patient is in a supine position. Supine positioning (coupled with poor muscular tone) causes the tongue to fall backwards against the soft palate and contact the posterior pharynx. Oral airways and/or nasopharyngeal airways are often needed to keep the soft palate and tongue from obstructing the airway.

This is problematic because some patients may have respiratory depression or poor tone, but an oral airway may still trigger a gag response and vomiting, risking aspiration. Although mask ventilation techniques emphasize jaw thrust, struggling to maintain upper airway patency in a supine position is intrinsically self-defeating. It is also ergonomically difficult and frequently a multi-person task, especially in large patients.

Supine positioning runs counter to lower airway (alveolar) patency. In the supine position, the lung’s upper areas compress the dependent alveoli, and abdominal contents push the diaphragm up, significantly reducing lung volume. Changing position from upright to supine reduces functional residual capacity (FRC) by as much as one liter. Because estimated FRC in adults measures approximately 2,400 ml, a reduction of 1,000 ml reduces FRC by 42 percent. Loss of tone (as occurs with anesthetic induction) or over-sedation further reduces FRC by 400 ml.

Collectively, then, FRC reduction from standing to supine plus loss of tone results in a reduction of roughly 52 percent! This reduction’s impact on alveolar gas absorption is dramatic, especially in patients who already have compromised lung function.

Sit Them Up
The first and most important technique for boosting oxygen absorption is to apply high oxygen concentration with high flow as a means of augmenting the patient’s negative inspiratory efforts. But beyond the application of 100 percent oxygen, and shy of extracorporeal membrane oxygenation or using hyperbaric oxygenation, clinicians have only two methods of further improving oxygenation across the alveoli: 1) positioning, and 2) positive end-expiratory pressure (PEEP).

The immediate and easiest positioning fix to open the lower airway? Sit the patient up. This causes the abdominal contents to move caudad, the diaphragm to drop, and lung volume to rapidly expand. The area for gas absorption across the alveoli dramatically increases with proper positioning.

Middle airway obstruction is an infrequent clinical problem because the three-dimensional shape of laryngeal cartilages and the cartilaginous rings of the trachea maintain patency regardless of positioning or muscular tone. An orally placed tracheal tube traverses the upper airway and reaches the mid-trachea level. When the middle airway obstructs due to intrinsic laryngeal-tracheal pathology (eg, tumors, angioedema about the larynx, blood clots, etc.) or trauma (eg, laryngeal fracture, direct tracheal injury, etc.), patients can die precipitously.
With an awareness of gravity and positioning, and an understanding of the three airway components, engineering airway interventions that augment patency and gas absorption makes sense. Here’s my stepwise approach to hypoxia with procedural sedation or in an initial emergency department presentation:

1. Sit the patient up, allowing the diaphragm to drop and the alveolar volume to expand, and pull on the mandible. This opens the upper airway.
2. Send O's up the nose—blast open the soft palate and shoot oxygen into the trachea up to and beyond 15 lpm.
3. Add PEEP with a bag valve mask (BVM) and a PEEP valve, or a continuous positive airway pressure system. PEEP is absolutely necessary when high flow oxygen (with cannula plus mask) does not achieve high oxygen saturations (ie, >98 percent).

To desaturate after the tracheal tube has been placed, first examine the system to ensure the tube is at right depth, the oxygen is connected, and the cuff is up. Suction through the tube to remove mucous plugs, clots, etc. If high-pressure alarms go off or bagging difficulty persists (that is not consistent with the patient’s pathology, ie, COPD, asthma, etc.), pull the tracheal tube. It is quite common to experience ball-valve obstructions from mucous plugs or clots that suctioning alone doesn’t resolve.

Plan to maximize oxygenation in every instance of procedural sedation. Use gravity to reduce the risk of aspiration, and always ask, “Do you need the patient flat?” We rarely do, and head elevation adds tremendously to patient safety.

The highest-risk patients may be those sedated for hip reduction because they need to be lying flat. Even a slight amount of head elevation (ie, 10 degrees) tilts the pannus down and improves lung function tremendously. Once the hip reduction is complete, bring the head higher and pull on the mandible with the nasal cannula on. Often the most dangerous part of sedation occurs after the reduction because pain input drops but the drugs haven’t worn off.

If positioning, pulling on the mandible, and nasal oxygen at high flow does not resolve hypoxia, add PEEP by using a BVM with a PEEP valve. Install PEEP valves on every BVM in your department so when PEEP is needed, you don’t need to locate one.

Be mindful of patients at high risk of desaturation due to alveolar disease (ie, heart failure, acute respiratory distress syndrome, multi-lobar pneumonia, aspiration, etc.). The sickest of the sick may require combining both upright positioning and PEEP for pre-oxygenation, and also during the onset phase of muscle relaxation when performing rapid sequence intubation. Even after successful intubation, these patients can prove difficult to oxygenate. Increase the fraction of inspired O_2, increase PEEP, lower tidal volumes, and increase the ventilator rate in these challenging cases.

Finally, consider prone positioning if upright positioning doesn’t allow for sufficient oxygenation.

Figure 3: Think of the airway in these three sections.

- **UPPER AIRWAY** (nasopharynx, pharynx, epiglottis)
- **MIDDLE AIRWAY** (larynx/trachea/bronchi)
- **LOWER AIRWAY** (Alveoli, Diaphragm)

Activity 1
Learn how to recognize and mitigate the risk of infection transmission.
Learn how to reduce infection transmission and healthcare-associated infections.
Faculty: Michael Bell, MD; Lila Mosqueda, MD, MPH; Peter Pronovost, MD, PhD

Activity 2
Healthcare-associated infections and the role of the healthcare environment.
Healthcare-associated infections and how to prevent them in healthcare settings.
Authors: Patrik Costello, Ruth Carnia, PhD, MS, RN, FNP; Russell R. O’Malley, MPH, PhD

Activity 3
Recognizing Infection Risks in Medical Equipment.
Medical equipment and devices pose infection risks: a look at their use, maintenance, and reprocessing.
Faculty: Michael Bell, MD; Samuel Edelstein, MD; J. Richard Garrett, Jr., PhD, MS, MPH, FNP-BC

Activity 4
Infection Transmission Risks Associated with Nonsterile Glove Use.
Handle with care: Hand hygiene and nonsterile gloves.
Faculty: Michael Bell, MD; Ruth Carnia, PhD, MS, RN, FNP; J. Richard Garrett, Jr., PhD, MS, MPH, FNP-BC; Susan C. Reddy, MD

Activity 5
Learn how the “prevention through design” strategy can reduce or prevent illness, fatalities, and occupational injuries.
Faculty: Stewart Chang, MD, MS; Bryan Christensen, MD, MPH; Lyric Lacroix, MD, MS, CIC, CPID

Activity 6
Learn how to implement a system-wide approach to prevent breaches in injection safety.
Learn how to document or of hypoglycemic and insulin-related death.
Faculty: Joseph Perez, SPPH, MA; Shane K. Kaiser, MD, MPH; FNUCE FISHER; Timothy Montesano, PhD, MPH, CIC

by KEVIN M. KLAUER, DO, EJD, FACEP

Myth: Normal Saline is the IV Fluid of Choice

Which fluid is superior, normal (0.9%) saline or balanced crystalloids (ie, lactated Ringer’s)? Balanced fluids, in theory, are defined as fluids that are more physiologic in several parameters when compared to normal saline (NS).

It appears we have a critical mass of sufficient evidence suggesting NS needs to take a back seat to lactated Ringer’s (LR).

LR has been criticized for being physiologically hypotonic, (reduced “actual osmolality” or tonicity) and thus may diffuse to extravascular spaces too quickly, limiting their effectiveness for volume expansion. Such diffusion results from osmotic pressure (ie, solutes and their associated osmotic coefficients). As an example, sodium and chloride only partially dissociate when dissolved and thus the solutes are only partially osmotically active (osmotic coefficient 0.926). The osmolarity of NaCl 0.9% is 308 mOsmol/L, but its actual osmolality is 286 mOsmol/kg H2O. The osmolarity of LR is 273 mOsm/L, but its osmolality is 254 mOsm/kg. This difference in tonicity may result in a shorter half-life for LR.

Hahn et al reported, “The T_1/2 for crystalloids is usually 20 to 40 min in conscious humans but might extend to 80 min or longer in the presence of preoperative stress, dehydra
tion, blood loss of <1 l or pregnancy.” Drubin and Hahn published data from 10 healthy male subjects, noting the half-life for NS and LR was 110 min and 50 min, respectively. The data is not without significant limitations. However, it does imply a longer half-life for NS, which is theorized to be, in part, from the renal vasoconstriction from the high chloride content or NS.1,2

If you are buying that half-life, as a function of toxicity, predicts outcomes, I’d be cautious. Although the individual properties of the fluids (ie, tonicity) cannot be isolated, outcomes appear to be better with balanced fluids. For instance, a meta-analysis of 14 randomized controlled trials including 18,916 patients treated for sepsis noted a mortality benefit from LR compared to NS (odds ratio 0.78).3

Some critics of LR have proposed that the infusion of lactate may worsen metabolic acidoses. However, much like the concern over lower tonicity, this concern is also a physiologic argument as opposed to evidence-based. Sodium lactate, the additive in LR, is heparically metabolized to bicarbonate and is not an acid.

So, what happens when lactate is infused? Despite the limitations of the study, Ross et al found no such effect in 137 blood donors (500 ml) with an estimated less than 15 percent blood loss. Post-donation, all groups had lactate levels between 1.25 and 1.7. However, post-infusion, the picture changed. After 2 L of intravenous fluid, the lactate was higher in the LR group (1.46), compared to both the NS and no infusion groups, which were 1.0 and 1.36, respectively. The base deficit for NS was 30 times that of LR, and the pH was the lowest for NS (7.32 for NS, 7.34 for LR, 7.36 for the controls).4 While not definitive, the study suggests buffers in fluids may positively impact acid–base status.

Quite the contrary, it is NS that has been proved to promote metabolic acidosis. Although theories vary, the dilutional effect on bicarbonate concentrations and an increase in unpaired anions (Cl-) resulting in a non-gap acidosis are two common explanations.

On March 1, 2018, Self et al published two studies from Vanderbilt on this topic, one focusing on the critically ill and the second on those not critically ill but admitted from the emergency department. Although un-blinded, the studies provide valuable insights. The first found that, “Among critically ill adults, the use of balanced crystalloids for intravenous fluid administration resulted in a lower rate of the composite outcome of death from any cause, new renal-replacement therapy, or persistent renal dysfunction than the use of saline.”5 Although there was no difference in the hospital-free days in the non-critically ill study, the authors found that, “balanced crystalloids resulted in a lower incidence of major adverse kidney events within 30 days than saline (4.7 percent vs. 5.6 percent; adjusted odds ratio, 0.82; 95 percent CI, 0.70 to 0.95; P=0.01).”6 In most cases, it may be time to check your saline at the door in favor of LR.

Editor’s Note: Visit ACEPNow.com to view the references for this article.

DR. KLAUER is an ACEP Board member; CMO–hospital-based services, chief risk officer, and executive director–patient safety organization at TeamHealth; ACEP Now medical Editor in Chief; and clinical assistant professor, University of Tennessee and Michigan State University College of Osteopathic Medicine.

Every second counts.

As Emergency Physicians, we know time is precious.

That’s why we really appreciate the time you make for ACEPNow every month.

Thank you for your loyalty – both to us and to your patients.
Student Loan Forgiveness
How physicians can use a federal program to reduce their debt burden

by JAMES M. DAHLE, MD, FACEP

Q. I understand there’s a way to get my student loans forgiven if I work for a non-profit hospital. How does that work?

A. You’re referring to the Public Service Loan Forgiveness (PSLF) program. This federal program allows you to have the remainder of your federal direct student loans forgiven, tax-free, if you make 120 monthly payments under an eligible payment plan while being employed full-time by the military, Veterans Administration, or a 501(c)(3) employer (ie, a non-profit employer).

Eligible payment plans include the standard 10-year repayment plan along with three income driven repayment (IDR) programs: Income Based Repayment (IBR), Pay As You Earn (PAYE), and Revised Pay As You Earn (RePAYE). These IDR plans also have a forgiveness component to them, which doesn’t require you to work for a 501(c)(3), but they require 20–25 years of payments, after which most emergency physicians (EPs) would have paid their loans off anyway. The amount forgiven is taxable. Thus, PSLF is really the only federal forgiveness program that most EPs should consider.

Most residency and fellowship programs qualify as non-profit employers, as do many academic positions and some community emergency physician positions. Bear in mind that working in a non-profit hospital doesn’t necessarily allow you to qualify. You must be an employee of the hospital, not a partner or employee of a private group that contracts with the hospital.

A typical EP with a typical medical school debt burden wouldn’t have any debt left to forgive after making 120 monthly payments under the standard 10-year repayment plan. The secret to actually receiving economic benefit under this program lies in enrolling in one of the other programs. PAYE and RePAYE have the lowest required payments—so percent of discretionary income, which is defined as the difference between your income and percent of the poverty line for your geographic area and family size. Note that the payments have nothing to do with the amount or interest rate of your debt. During residency, RePAYE is often the best program to enroll in because it may actually subsidize the loan, lowering your effective interest rate. PAYE is usually the best program after residency because, unlike RePAYE, it caps payments at the 10-year standard repayment plan amount.

The amount left to be forgiven after 10 years of payments turns out to be essentially the difference between what you would’ve paid under the standard repayment plan and what you did pay under an IDR plan. So, a typical medical student may graduate with $200,000 in debt, which grows to $350,000 during residency (IDR payments don’t even cover the interest on the debt). The student then pays it down to perhaps $150,000 as an attending, at which point the rest is forgiven. The more payments you make that are less than the standard payments, the more debt is left to be forgiven after 120 payments.

This leads doctors to use a few strategies to try to maximize the amount forgiven. First, some types of loans (eg, Federal Family Education Loans and Federal Perkins Loans) don’t qualify for forgiveness unless they are consolidated into a Federal Direct Loan. Second, you can enroll in an IDR program and start making payments late in your fourth year of medical school, essentially increasing the percentage of payments you make while your income, and thus your payments, remain low. Third, contributing to tax-deferred retirement accounts during residency further lowers your income and your required payments. Finally, some physicians married to high earners find it advantageous to file their taxes as “married filing single” while enrolled in an IDR program. Even though this often increases their combined tax burden, it can also reduce the borrower’s income (at least in the IDR and PAYE programs) and thus their spouse’s required payments.

A longer training period can also help maximize forgiveness. A physician who spends seven years in residency and fellowship may need to make full payments for only three years as an attending before receiving forgiveness.

Private student loans are never eligible for PSLF, and the best strategy for managing those usually involves refinancing to a lower rate as soon as possible (usually shortly after medical school graduation) and paying them off early in your career. Several lenders allow very low payments during training, just like the federal IDR programs.

Caution: Refinancing your federal direct loans can be a big mistake if you later end up working for a 501(c)(3) after residency graduation. Another common error is putting your loans into forbearance or deferment during training, which prevents the accumulation of lower IDR payments that would later allow for significant forgiveness under PSLF. If you make IDR payments throughout residency and work full-time for a 501(c)(3) after residency, going for PSLF instead of refinancing the loans generally works out better mathematically than refinancing, even if the interest rate is higher.

Many students, residents, and attending physicians worry Congress will change the rules and take PSLF away. That is a significant risk—both the Obama Budget of 2013 and the Trump Budget of 2018 proposed doing away with the program as we know it. The Prosper Act, currently in House committee, would also cause significant changes to the federal loan programs if it becomes law in its current form.

However, in the past, when federal student loan programs were changed, those currently in the program were usually grandfathered into the old program. A good way to hedge this legislative risk is to make large student loan payments as an attending that would allow you to pay off your loans within two to five years after residency completion, but make those payments to your own investing account. Then, if something happens to PSLF, you can simply take those funds and pay off the loans. If you do receive forgiveness, you can use that money to bolster your retirement nest egg or other savings goals.

Some worry about the morality of not paying back borrowed money when you have the means to do so. My response? Hate the game, not the player. I see loan forgiveness no differently than using a tax-advantaged retirement savings account or taking the child tax credit. We have no duty to leave money on the table that we legally qualify for, even if we disagree with federal student loan policy.

Since PSLF was instituted in 2007, the first borrowers are just now starting to receive forgiveness after making their 120 monthly payments. As the years go by, you’ll see more and more physicians receiving this federal benefit. Managing your student loans well will increase your financial security and allow you to take better care of your family and patients.
Safe Discharge in Non-low Risk Chest Pain

Risk stratify for follow-up intensity as opposed to discharge

by RYAN PATRICK RADECKI, MD, MS

There’s been a clear shift in the emergency medicine mindset toward chest pain over the past few years, including an explosion of literature and professional guidance in support of the history, electrocardiogram, age, risk factors, and troponin (HEART) score.¹ The primary application of this and other similar rules is to support risk-stratification and the early discharge of patients with chest pain at low risk for acute coronary syndrome (ACS).

In fact, various strategies for early discharge have been endorsed in the guidelines from the American College of Cardiology for over the past few years, including an accelerated diagnostic protocol (EDACS).² These guidelines support the use of not only such stalwarts as the Thrombolysis in Myocardial Infarction (TIMI) and Global Registry of Acute Coronary Events (GRACE) scores, but HEART, a modification of HEART called HEARTscore³, and the Vancouver Rule. Suffice it to say, if you’re not at least risk-stratifying patients for early discharge using clinical judgement or an objective tool, you’re lagging.

However, this article isn’t about discharging patients with low-risk chest pain. This article discusses discharging the other 40–50 percent of emergency department patients with chest pain who don’t fall into such an optimal classification. For instance, a septuagenarian with non-obstructive coronary artery disease on a previous cardiac catheterization, a couple seconds of atypical chest pain, and an undetectable troponin I counts as a "moderate" risk by HEART. Or a 65-year-old male without any known risk factors and non-specific pain who falls into the “not low risk” classification of the Emergency Department Assessment of Chest Pain Score (EDACS).³

How should we manage the vast heterogeneous cohort of patients like these who aren’t in the low-risk strata?

It’s Two Questions

This question basically breaks down into two components, which people frequently stick together and address singly when evaluating the performance of these algorithmic approaches. These approaches try to pare down the cohort by defining certain discharge criteria in the emergency department, and they measure success by remaining free of major adverse cardiac events (MACE) for a certain period of time.

This approach seeks to prevent the dreaded, “Hey, remember that guy with chest pain you sent home last week?” follow-up conversation on a future shift. However, assessing safety for discharge truly breaks down into these two questions: 1) “Have I adequately ruled out an acute coronary syndrome on today’s visit?” and 2) “What follow-up or additional testing will prevent a future MACE?”

To answer question one, we rely upon the relevant presenting features of the chest pain, the electrocardiogram, and biomarker testing. In the vast majority of cases in which acute ischemia is not apparent or highly suspected, the limiting factor becomes biomarkers. In the past, concern over the relative lack of early sensitivity to cardiac ischemia led clinicians to routinely refer patients for admission or observation for repeat biomarker testing. However, in recent years, an explosion of new literature describes the early test characteristics of both conventional and highly-sensitive troponins, and it’s clear the biomarker rule-out can be performed entirely within the emergency department.

These accelerated diagnostic protocols may involve one-hour or two-hour repeat testing, or, if the time of onset of the more recent symptoms is adequately remote, a single troponin on arrival may prove sufficient. Protocol sensitivity typically exceeds 95 percent, with negative predictive values in excess of 99 percent, even in patients with known coronary disease or coronary risk factors.

Determining the best next step fundamentally asks the purpose of admission or observation. For an admission or observation to have value, whether on a health-system level or to a patient on a deductible health insurance plan, the intervention should offer a reasonable expectation of identifying a problem potentially amenable to treatment. Unfortunately, despite our reliance on various stress tests and the increasing prevalence of CT coronary angiography, population-based and claims-based data find no clear benefit signal.⁴ These data don’t rule out individual benefit to intelligently-selected downstream testing, but the premise that admission or observation will benefit patients with known cardiac disease remains unproven.

However, the risk score data does make clear non-low risk patients are precisely that. These patients do have elevated risk for serious outcomes, some preventable, some not. When assessing whether a non-low risk patient is safe for discharge after accelerated biomarker rule-out, the key element is follow-up. Many patients have well-established coronary anatomy and disease, and the benefit from subsequent invasive or non-invasive testing ranges may easily be zero for a patient who’s primarily medically-managed. This follow-up can occur via established primary care or a cardiologist, depending on the complexity of the subsequent decision-making process—or, better yet, prior to disposition, if a specialist familiar with the patient’s management can be looped in contemporaneously.

The bottom line: A diagnosis of ACS can be rapidly excluded in the emergency department in most patients, and we can think of our various decision instruments for risk-stratification as tools not to determine which patients we should discharge, but tools to help us triage patients for varying follow-up intensity. Anecdotally, at my institution, with well-integrated follow-up more than 85 percent of biomarker-negative chest-pain presentations are discharged directly from the emergency department without untreated patient safety. It might seem implausible, but it can be done!

References

Going Old School with Alcohol Withdrawal Treatment

Brining back phenobarbital monotherapy for alcohol withdrawal

by JEREMY SAMUEL FAUST, MD, MS; AND LAUREN WESTAFER, DO, MPH

Shortening the time window of research knowledge to clinical application is one of the major aims of the Free Open-Access Medical Education (FOAMed) movement. When new research is published, it often takes years, and sometimes decades, for that information to trickle out into mainstream practice. That’s where FOAMed shows some of its greatest promise. In fact, FOAMed junkies might occasionally be accused of being the opposite of late-adaptors; many of our most enthusiastic FOAMed consumers have been criticized for adopting new ideas too quickly, based solely on a podcast or a blog that may have been based on a body of low quality research.

There’s probably some truth to that, but in reality, we haven’t heard too many stories about cases gone wrong because a physician was blindly following the advice of some joker with a blog or a podcast available on iTunes. In fact, we’ve found that FOAMed consumers tend to be the ones who are likely to be among the most informed.

CONTINUED on page 24
when it comes to journals and textbooks, not just what's free online. We'd like to think that's because FOAMed encourages its users to go deeper than one podcast or a blog and inspires them to look carefully into a topic being discussed. Sometimes you find that what passes for "cutting-edge FOAMed" is actually a venerable treatment that, for some reason, has been supplanted by something shiny and new. In that spirit, in a recent episode of FOAMcast, we covered some FOAMed that advocated for the return of a tried-and-true treatment masquerading as progressive medicine for an emergent medical condition that we treat all the time: alcohol withdrawal.

Treatment History

After the 1950s, benzodiazepines became the mainstay treatment for alcohol withdrawal and delirium tremens. However, a recent blog post on the Pulmcrit/Emcrit.org website, written by critical care physician Joshua Farkas, MD, made a fairly convincing argument for bringing back the previous mainstay of alcohol withdrawal treatment, phenobarbital. Many alcohol withdrawal protocols in use today include phenobarbital when the benzos just aren’t working. What Dr. Farkas is talking about is phenobarbital as monotherapy for alcohol withdrawal. Cool!

The beauty of using phenobarbital is that its dosing is far easier to keep straight. Rather than deciding among diazepam, lorazepam, or midazolam—perhaps after a failed trial of chlordiazepoxide (Librium)—and trying to guess how large a dose to give and how often, the phenobarbital monotherapy protocol seems to have an easier opening gambit. In patients with moderate to severe alcohol withdrawal who have not yet received benzodiazepines (or other sedatives) and appear to have alcohol withdrawal alone (ie, no other active neurologic problem), simply give 10 mg/kg (ideal body weight) intravenously over 30 minutes. Then wait 30 minutes. If after one hour, the patient still requires more medication, you can give 130 mg (for mild symptoms) or 260 mg (for moderate to severe symptoms).
IV given over three to five minutes, as needed every 30 minutes. As long as the cumulative dose does not exceed 20 mg/kg IV, there is little risk. There are also oral and intramuscular strategies for maintenance. For that, check out emcrit.org/pulmcrit/phenobarbital-reloaded.

This protocol is certainly easier than many of the benzodiazepine-based protocols. Better yet, some recent data suggest that this approach may even decrease intubation rates. This was suggested (though hardly proven) in a study published in Critical Care Medicine.1

On our recent show, we discussed why the lower intubation rates might be occurring in the patients getting phenobarbital only. While we can’t be sure, it is a distinct possibility that phenobarbital isn’t better than the fairly aggressive diazepam-based protocol suggested in Goldfrank’s Toxicology Emergencies. Sure, phenobarbital hits NMDA receptors in addition to GABA and that might confer some advantage over benzos. However, it might just be that people aren’t that comfortable following the Goldfrank-inspired protocol—which is a shame because it works well. Many facilities feel uneasy giving escalating doses of diazepam (starting from 5 mg and rising to 10 mg, 20 mg, 40 mg, and even 80 mg per dose) every five minutes to a patient in alcohol withdrawal. Instead, the patients get under-dosed, and they end up progressing to delirium tremens and, not infrequently, require intubation for airway protection.

Interestingly, after we published our podcast, the feedback we got was divergent. Younger physicians tended to find the idea of ditching benzodiazepines in favor of phenobarbital monotherapy to be sort of crazy, but kind of awesome. As usual, the up-and-comers are excited by anything that sounds edgy, especially when it involves controlled substances, but the more seasoned emergency physicians were less impressed, albeit somewhat enthusiastic. One of the more experienced critical care physicians we spoke to said, “Yeah, we used to use phenobarbital monotherapy all the time, and it was easy and worked great. We should definitely consider going back to that. I hate CIWA scores [Clinical Institute Withdrawal Assessment for Alcohol scale, a tool to assess withdrawal severity]!”

So, we guess what’s old is new again. FOAMed has many faces and facets, and we at FOAMcast are pleased to bring it to our listeners.

Do you have any effective old-school treatments that make you feel like a dinosaur? Let us know, and as always, share any evidence and your experience. We’d love to cover it in a future show.

Reference
The University of Chicago's Department of Medicine, Section of Emergency Medicine, is seeking full-time faculty members to serve as Emergency Physician. As we prepare to open a new adult emergency department and establish an adult Level 1 Trauma Center, academic rank is dependent on qualifications. Applicants are required to be board certified or board eligible in emergency medicine and to be eligible for Illinois licensure by the start of appointment. Responsibilities will include teaching in the educational programs sponsored by the Section and participation in scholarly activity. We seek candidates looking to develop an academic niche that builds on our faculty expertise in basic and translational research, health equity and bioethics research, geriatric emergency care, global emergency medicine, medical education, stem cell/hospital medicine, critical care transport, and ultrasound. We host one of the oldest Emergency Medicine Residency programs in the country and serve as a STEM receiving hospital, a Comprehensive Stroke Center, a Burn Center, and a Chicago South EMS regional resource hospital. The Adult ED has an annual volume of 65,000 and our Pediatric ED cares for 30,000 patients per year, including 1,000 level 1 trauma patients. This position provides competitive compensation and an excellent benefits package. Those interested must apply by uploading a cover letter and CV online at academiccareers.uchicago.edu/applicants/Central?quickFind=55160. Review of applications will continue until all available positions are filled.

The University of Chicago is an Affirmative Action/Equal Opportunity/Disabled/Veterans Employer and does not discriminate on the basis of race, color, religion, sex, sexual orientation, gender identity, national or ethnic origin, age (except as law requires), marital status, protected veteran status, genetic information, or other protected classes under the law. For additional information please see the University's Notice of Nondiscrimination at http://www.uchicago.edu/about/non_discrimination_statement/. Job seekers in need of a reasonable accommodation to complete the application process should call 773-702-0287 or email ACOppAdministrator@uchicago.edu with their request.

Baylor College of Medicine

The Department of Emergency Medicine at Baylor College of Medicine is looking for Faculty who are interested in a career in Academic Emergency Medicine. We are currently hiring faculty of all ranks commensurate with prior experience and seeking applicants who have demonstrated a strong interest and background in medical education, simulation, ultrasound, or research. Clinical opportunities are also available at our affiliated hospitals.

The Department of Emergency Medicine at Baylor College of Medicine, a top medical school, is located in the world’s largest medical center, in Houston, Texas. The Baylor Emergency Medicine Residency was established in 2010, and we recently received department status in Jan 2017. Our residency program has grown to 14 residents per year in a 3-year format. We offer a highly competitive academic salary and benefits commensurate to academic level and experience.

Our academic program is based out of Ben Taub General Hospital and Baylor St. Luke’s Medical Center. Ben Taub General Hospital is the largest Level 1 trauma center in southeast Texas with certified stroke and STEM programs that see nearly 100,000 emergency visits per year. Baylor St. Luke’s Medical Center is home to the Texas Heart Institute and with freestanding Baylor St. Luke’s Emergency Centers offers multiple additional practice sites for Baylor faculty. BCM has a collaborative affiliation with eight world-class hospitals and clinics in the Texas Medical Center. These affiliations, along with the medical school’s research capabilities, help us to create one of the strongest emergency medicine experiences in the country.

Those interested in a position or further information may contact Dr. Dick Kuo via email dkuo@bcm.edu or by phone at 713-873-7044. Please send a CV and cover letter with your past experience and interests.

Emergency Physicians of Tidewater (EPT) is a physician-owned, physician-run, democratic group of ABEM/AOBEM eligible/certified EM physicians serving the Norfolk/Virginia Beach area for the past 40+ years. We provide coverage to 5 hospital-based EDs and 2 free-standing EDs in the area. Facilities include Level 1 trauma center, Level 3 trauma center, academic medicine and community medicine sites. All EPT physicians serve as community faculty to the EVMS Emergency Medicine residents. EM via EPIC.

Great opportunities for involvement in administration, EMS, ultrasound, hyperbarics and teaching of medical students and residents. Very competitive financial package and schedule. Beautiful, affordable coastal living.

Please send CV to eptrecruiter@gmail.com or call (757) 467-4200 for more information.

Envision Physician Services is seeking EM Physicians at Medical Center of Trinity located in Trinity, FL. Medical Center of Trinity has a 39-bed ED including Fast Track, an annual ED volume of 55,000 visits and a dedicated pediatric emergency care with separate treatment area and waiting room. Affiliated locations include free-standing EDs in Citrus Park, Lutz and Palm Harbor, FL. Located in the Tampa Bay area, home to world class beaches, fishing and golfing and conveniently located near such popular destinations as Walt Disney World, Busch Gardens, Amalie Arena and Tropicana Field. Excellent compensation package available. Full-time, part-time, per diem and travel opportunities. For more details, contact our dedicated recruiter today at 877.266.6059 or MakeACchange@evhc.net.
The Emergency Medicine Department at Penn State Health Milton S. Hershey Medical Center seeks energetic, highly motivated and talented physicians to join our Penn State Hershey family. Opportunities exist in both teaching and community hospital sites. This is an excellent opportunity from both an academic and a clinical perspective. As one of Pennsylvania’s busiest Emergency Departments treating over 75,000 patients annually, Hershey Medical Center is a Magnet® healthcare organization and the only Level 1 Adult and Level 1 Pediatric Trauma Center in PA with state-of-the-art resuscitation/trauma bays, incorporated Pediatric Emergency Department and Observation Unit, along with our Life Lion Flight Critical Care and Ground EMS Division. We offer salaries commensurate with qualifications, sign-on bonus, relocation assistance, physician incentive program and a CME allowance. Our comprehensive benefit package includes health insurance, education assistance, retirement options, on-campus fitness center, day care, credit union and so much more! For your health, Hershey Medical Center is a smoke-free campus. Applicants must have graduated from an accredited Emergency Medicine Residency Program and be board eligible or board certified by ABEM or AOBE. We seek candidates with strong interpersonal skills and the ability to work collaboratively within diverse academic and clinical environments. Observation experience is a plus.

FOR ADDITIONAL INFORMATION, PLEASE CONTACT:

Susan B. Promes, Professor and Chair, Department of Emergency Medicine, c/o Heather Peffley, Physician Recruiter, Penn State Health Milton S. Hershey Medical Center, 500 University Drive, PO Box 855 Mail Code A595, Hershey PA 17033, Email: hpeffley@pennstatehealth.psu.edu

OR apply online at: http://hmc.pennstatehealth.org/careers/physicians

Penn State Health Milton S. Hershey Medical Center is committed to affirmative action, equal opportunity, and the diversity of its workforce. Equal Opportunity Employer – Minorities/Women/Protected Veterans/Disabled.
Our physicians can retire with millions by contributing this to their 401(k):

At US Acute Care Solutions we provide a company-funded 401(k) at 10% which means physicians, over the course of a 30-year career with us, could have millions for retirement.* All without contributing anything from their own pockets. How can we offer such amazing benefits? It’s easy. As the largest physician-owned group in the country, we are the ones creating our own benefit packages. We know what it takes to live the good life, and we deliver. To find out more, go to usacs.com/retirement.

*Based on a maximum company contribution of $27,500 at 8% return over a 30 year period.